Precision measurement of ultralow losses of an
asymmetric optical microcavity
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The losses of the transmission, absorption, and scattering of optical mirrors govern the extraction
efficiency of a nonclassical state that is generated inside a cavity. By measuring the reflectivities and
transmittances and the matching factors from both sides of a super-mirror-made microcavity at various
mode-matching efficiencies, the transmission losses and the unwanted losses, including the absorption
and scatter losses, of the left and right cavity mirrors were both determined at the parts-per-million
level. © 2006 Optical Society of America
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The Fabry—Perot cavity with high finesse has played
an important role in modern experimental optics
research, especially in cavity-enhanced optical spec-
troscopy,! such as cavity ringdown techniques,? high-
precision optical measurement in gravitational wave
measurement,? laser frequency stabilizations,* and
quantum optics and atomic physics.?¢ To reach the
strong interaction between atom (ion) and photon,®
ultra-low-loss mirrors with losses at the parts-per-
million (ppm) level, the so called super mirror, are
made and used in cavity quantum electrodynamics
experiments.® The super cavity, which is built by
such super mirrors, usually has finesse as high as
106.7 Together with the atom manipulation, it is now
an important system for atom—photon entanglement
and quantum state generations. The losses of the
transmission and other unwanted losses (absorption
and scattering) of the optical mirrors govern the ex-
traction efficiency of a nonclassical state that is gen-
erated inside a cavity. Large unwanted losses of the
cavity mirrors limit the information extraction for
intracavity quantum states, which can be known by
measuring cavity output fields.® Building a microcav-
ity with ultralow unwanted losses and determining
the unwanted loss and effective (transmitted) loss are
important issues. The usual method of measuring
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the mirror losses is the cavity ringdown technique
(CRDT),5? but there are actually some problems in
the experiment: First, CRDT does not work well for
the microcavity even with super mirrors, so people
usually use the same mirrors to build a long cavity
and get the cavity ringdown signal, then determine
the losses of the cavity.” But during the process of
building the microcavity with the same mirrors, the
mirror’s losses might have been changed; thus we
need a measurement in real time for an already-
made microcavity. Second, supposing the losses do
not change during the process of building the micro-
cavity, the losses we got are the total losses of the
cavity. Usually, researchers assumed that both mir-
rors are identical and then deduced the losses of each
mirror.1° Third, even if the losses of each mirror are
known, the ratio between the transmission loss and
other unwanted losses still remains unknown. Al-
though by using some methods, such as mirror
absorption-induced optical bistability, the absorption
coefficients can be precisely measured,!* but there
are still some other losses, such as scattering losses
and diffraction losses, which cannot be determined.
In 2001, Hood et al.1® proposed a direct measurement
and determined the transmittance and other un-
wanted losses of super mirrors under the assumption
of a symmetric cavity and in the case in which the
unwanted losses are much less than those of the trans-
mittance. This method has been successfully used to
measure the super-mirror losses at 1064 nm.*2 In this
paper we have considered the general situation in
which the cavity is asymmetric; i.e., each mirror has
its own transmittance and unwanted losses. By send-
ing the probe beams on both sides of the cavity and
measuring the reflectivities and transmittances as
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Fig. 1. Schematic of an optical cavity and its transmissions and
reflections.

well as the mode-matching factors, the wanted and
unwanted losses for each individual cavity mirror are
precisely determined at the parts-per-million level.

The basic model is shown in Fig. 1. R;, T}, and [;
are, respectively, the reflectivity, transmittance, and
extra losses of mirror i, where R; + T, + [, = 1
(z = 1, 2). First, let us suppose that a light beam is
incident to a cavity from left to right and all the light
power is perfectly coupled to the TEM,, mode of the
cavity. When the cavity is resonant with the light
field the ratio between the reflected power P,.;” and
incident power P,* is!3

p(r,L) = PrefL/PinL
= [(\E - \E + 11€IT2)/(1 - VR1R2)]2, @)

and the ratio between the transmitted power Py,
and incident power P, is

ﬁ’(z,L) = PtransL/PinL

= [\(1 - R1 - l1)(1 - Rz - lz)/(l - \}m)]2
(2)

Similarly, if the light is incident from the right side,
the ratio between the reflected power P," and inci-
dent power P, " is

g)(r,R) = PrefR/PinR
=[(\R;— \R; +5\R;)/(1— \R:Ry)) . (3)

The ratio between the transmitted power P,,.." and
the incident power P, is the same as in Eq. (2), so we
denote both transmitted ratios by g,. From Eqgs. (1)
and (3) the unwanted losses of the two mirrors are
extracted as

R, — WL (1-\RiR))
\Ry

l1:1_ N (4)

L—1— R, — \““‘@(r,R)(]- - \5R1R2)
’ \R,

. (5)

By substituting these two relations into Eq. (2), the
result is

(1= Ry)\p1yRi + (1 = R)\9ryRe — (1 — \RiR)
X[\PPg + (1 — 9,)\R:R;] = 0. (6)

If we consider that the reflectivities are very close to
the unit and make the proper approximation, the
result is

(1= Ro)\9rzy + (1~ R1)\9rry — (1= \RiR»)
X [\;p(r,L)p(r,R) +(1- Wt)] =0. (7)

If the cavity finesse is known, we have another rela-
tion,

F=2n/(2— R, —Ry). 8)

From Eqgs. (7) and (8) we can get the reflectivities of
the two mirrors. Thus the extra losses /; and the
transmittances 7 can also be determined.

In the actual experiment there is always some light
that does not couple into the TEM,, mode of the cav-
ity so the perfect mode matching cannot be achieved.
The light from those higher order modes are reflected
when the light field is resonant with the cavity TEM,,
mode, so the measured ratio g ,” (i = R, L) of re-
flected power over the incident power is always
higher than that of the perfect mode matching,
while the ratio ¢ ;" (i = R, L) of measured trans-
mitted power over the incident power is lower. Here
i = R, L stands for the light incident from the right or
left. Let &, (i = R, L) be the mode-matching factor
that is the ratio of the power coupled into the TEM,,
mode over the total incident power. From g, =
[oey" — (1 — &)]/e; and pg;) = pu,)"/&; the measured
ratios can be converted to the situations correspond-
ing to the perfect mode matching.1® Since the spac-
ing of the higher modes of the microcavity is large
enough, each higher mode can be identified and thus
the mode-matching factor ¢; i = R, L) can be mea-
sured by the transmitted spectrum of the micro-
cavity.

Our microcavity was built by using a super mirror
with a radius of 10 cm. All the measurements are
done at 852 nm. The measured free spectra range is
FSR = 3.41 THz, which gives 43.9 um of cavity
length. The transverse mode spacing is TMS =
32.1 GHz. With the help of 300 MHz rf sidebands, the
cavity linewidth is determined as &v = 47.7 MHz, so
the finesse of the cavity is F = FSR/év = 7.14
X 10* To avoid the influence of the birefringence of
the cavity mirrors,1° the incident beam is linearly
polarized and the polarization is along one birefrin-
gence axis. The reflected beam is coupled out by a
polarizing beam splitter with a half-wave plate and a
polarization rotator (terbium gallium garnet (TGG)
crystal) (see Fig. 2). Two sensitive photodetectors, D1
and D2 (New Focus 2001), are used to detect the
reflected and transmitted light from the cavity.

Figure 3(a) shows a set of typical reflected (solid
curve) and transmitted (dashed curve) TEM,, mode
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Fig. 2. (Color online) Setup for the left-side incident beam (sim-
ilar to the right-side incident beam). PBS, polarizing beam splitter;
HP, half-wave plate; D1 and D2, two photodetectors.

spectra of the cavity for a right incident beam when
the cavity is slowly scanned over the resonance,
where the matching factor is ¢ = 0.652. The mea-
sured ratio of reflected power over the incident power
9er  and the ratio of transmitted power over inci-
dent power gz are given by ¢z = V2/V1 = 0.860
and g, " = n(V3/V1) = 0.00892, where n = 0.538 is
the total propagation efficiency in the reflected route.
Figure 3(b) gives the converted perfect-mode-
matching results corresponding to Fig. 3(a); thus we
get 9,z = 0.786 and g,z = 0.0137.

The mode-matching factor is an important param-
eter in this measurement. To determine this factor
precisely, we increase the incident power, and we can
clearly observe up to the tenth transverse mode. Fig-
ure 4 shows the higher-order modes from the zeroth
to the fourth mode. Since the transverse mode spac-
ing is very large, the originally generated transverse
modes are separated from each other due to nonde-
generacy caused by distortions of the cavity mirrors.14
Higher-order modes over the tenth mode are very
small and can be ignored. The mode-matching factor
can then be determined. It is ¢ = 0.652 in Fig. 4.

We can slightly change the alignment of the inci-
dent beam to vary the mode matchings and measure
9" and p ;" under various mode-matching factors.
Once the mode-matching factors are known, the re-
flected and transmitted ratios ¢, and g, corre-
sponding to perfect mode matching can also be
obtained. The results are shown in Table 1 (for the
right incident beam) and Table 2 (for the left incident
beam). We can see that, although ¢, and g ;" are
varied when the mode-matching factor changes, the
converted perfect-mode-matching ratios remain al-
most the same, which clearly shows the reliability of
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Fig. 3. (Color online) Reflected and transmitted spectra of the
cavity TEM,, mode for a right-side incident beam (the mode-
matching factor ¢ = 0.652). (a) Original outputs by detectors D1
and D2 and (b) converted perfect-mode-matching TEM,, spectra
(normalized to 1).
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Fig. 4. Higher-order transverse modes. (a)—(e) Zeroth- to fourth-
order modes, and the mode-matching factor is determined as 0.652.

the measurement. We can see that gz = 0.784(3)
and g,z = 0.810(6), and the dissimilarity of these
two values indicates the asymmetry of the cavity;
i.e., the two cavity mirrors are not identical. Simi-
larly, p;r = 0.0138(2) and ¢, = 0.0129(6), which
are very close, and this is in accordance with the
above-mentioned theory. Let ¢, = (pur + #¢1)/2
= 0.0134(10).'5 From relations (7) and (8) we get
the reflectivities of the two cavity mirrors: R, =
0.9999619(3) and R, = 0.9999501(3), and thus the
losses can be determined as [; = 33.2(7) ppm and
l, = 45.4(6) ppm; the transmittances are given by
T, = 5.009) ppm and 7T, = 4.5(8) ppm, accordingly.
In conclusion, we have determined the losses of two
different super mirrors that formed an asymmetric
micro-optical cavity by measuring the reflectivities
and transmittances from both sides of the cavity at
various mode matchings. The effective transmission
losses and the unwanted losses of the microcavity are
both reliably determined at the parts-per-million
level. Such a method of measuring the ultralow losses
of the cavity can be used easily for all kinds of optical
cavities in real time, especially for those already-built
super cavities, to monitor the long-term change of the

Table 1. Reflectivities and Transmittances for Right Incident Beam

& Do) Par)” Do) [
0.882 0.809 0.01220 0.784 0.0138
0.710 0.848 0.00979 0.785 0.0138
0.652 0.860 0.00892 0.786 0.0137
0.553 0.879 0.00770 0.781 0.0139
0.390 0.916 0.00528 0.786 0.0135
0.180 0.960 0.00248 0.780 0.0138
Mean — — 0.784(3) 0.0138(2)




Table 2. Reflectivities and Transmittances for Left Incident Beam

€ Vo) Per)” P,L) Pa,L)
0.745 0.857 0.00950 0.809 0.0127
0.722 0.866 0.00901 0.814 0.0123
0.653 0.874 0.00847 0.807 0.0130
0.603 0.887 0.00767 0.813 0.0127
0.538 0.901 0.00680 0.816 0.0126
0.381 0.924 0.00533 0.801 0.0140
Mean — — 0.810(6) 0.0129(6)

cavity quality, or for those micro or miniature super
cavities where CRDT does not work well.
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